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Abstract

Heap allocation with copving garbage collection is a general storage management technique for
modern programming languages. It is believed to have poor memory subsvstem performance.
To investigate this, we conducted an in-depth study of the memory subsvstem performance of
heap allocation for memory subsystems found on many machines. We studied the performance of
mostly-functional Standard ML programs which made heavy use of heap allocation. We found that
most machines support heap allocation poorly. However. with the appropriate memory subsystem
organization, heap allocation can have good performance. The memory subsystem property crucial
for achieving good performance was the ability to allocate and initialize a new object into the cache
without a penalty. This can be achieved by having subblock placement with a subblock size of one
word with a write allocate policy, along with fast page-mode writes or a write buffer. For caches
with subblock placement. the data cache overhead was under 9% for a 64K of larger data cache:
without subblock placement the overhead was often higher than 50%.




1 Introduction

Heap allocation with copying garbage collection is widely believed to have poor memory subsystem
performance [30. 38, 48, 149. 50]. To investigate this. we conducted an extensive study of memory
subsystem performance of heap allocation intensive programs on memory subsystem organizations
typical of many workstations. The programs. compiled with the SML/NJ compiler [1]. do tremen-
dous amounts of heap allocation. allocating one word every - to 10 instructions. The programs used
a generational copying garbage collector to manage their heaps. To our surprise. we found that
for some configurations corresponding to actual machines, such as the DECStation 5000/200. the
memory subsystem performance was comparable to that of (' and Fortran programs [12]: programs
ran only 3 to 13% slower due to data cache misses than thev would have with an infinitely fast
memory. For other configurations. the slowdown due to data cache misses was often higher than
50%.

The memory subsvstem features important for achieving good performance with heap allocation
are subblock placement with a subblock size of one word. combined with write-allocate on write-
miss, page-mode writes, and cache sizes of 32k or larger. Heap allocation performs poorly on
machines whose caches are smaller than the allocation area of the programs (256K or larger for
the benchmarks studied here) and do not have one or more of the features mentioned above: this
includes most current workstations.

Our work differs from previous reported work [30. 38. 48. -19. 50] on memory subsystem per-
formance of heap allocation in two important wavs. First. previous work used the overall miss
ratio as the performance metric. which is a misleading indicator of performance. The overall miss
ratio neglects the fact that read and write misses may have different costs. Also. the overall miss
ratio does not reflect the rates of reads and writes. which may substantially affect performance.
We use memory subsystem contribution to cycles per instruction (C'PI) as our performance metric.
which accurately reflects the effect of the memory subsvstem on program running time. Second.
previous work did not model the entire memory subsystem: it concentrated solely on caches. Mem-
ory subsystem features such as write buffers and page-mode writes interact with the costs of hits
and misses in the cache and should be simulated to give a correct picture of memory subsystem
behavior. We simulate the entire memory subsystem.

We did the study by instrumenting programs to produce traces of all memory references. We fed
the references into a memory subsystem simulator which calculated a performance penalty due to
the memory subsystem. We fixed the architecture to be the MIPS R3000 [28] and varied cache con-
figurations to cover the design space typical of workstations such as DECStations, SPAR("Stations.
and HP 9000 series 700. We studied eight substantial programs.

We varied the following memory subsystem parameters: cache size (8K to 512K). cache block
size (16 or 32 bytes), write miss policy (write allocate or write no-allocate), subblock placement
(with and without), associativity (one and two way). TLB sizes (| to 64 entries). write buffer depth
(1 to 6 deep), and page-mode writes (with and without). We simulated only split instruction and
data caches, i.e.. no unified caches. We report data only for write-through caches but the results
extend easily to write-back caches. '

Section 2 gives background information. Section 3 describes related work. Section 1 describes
the simulation methods. the benchmarks. and the metrics used to measure memory subsystem
performance. Section 5 presents the results of the simulation studies. an analysis of those results,
validation of those results. and an analytical model which is used to extend the results to programs
with different allocation behavior. Section 6 suggests promising areas for future work. Section 7
concludes.




2 Background

The following sections describe memory subsyvstems, copving garbage collection. SML. and the
SML/NJ compiler.

2.1 Memory subsystems

This section reviews the organization of memory subsystems. Terminology for memory subsystems
is not standardized; we use Przybylski’s terminology {39].

It is well known that C'PUs are getting faster relative to DRAM memory chips [37]: main
memory cannot supply the CPU with instructions and data fast enough. \ solution to this problem
is to use a cache. a small fast memory placed between the CPU and main memory that holls a
small subset of memory. If the C'PU reads a memory location which is in the cache, the value is
returned quickly. Otherwise the C'PU must wait for the value to be fetched from main memory.

Caches work by reducing the average memory access time. This is possible since memory
accesses exhibit spatial and temporal locality. Temporal locality means that a memory location
that was referenced recently will probably be referenced again soon and is thus worth storing in
the cache. Spatial locality means that a memory location near one which was referenced recently
" will probably be referenced soon. Thus. it is worth moving the neighboring locations to the cache.

2.1.1 Memory subsystem organization

This section describes cache organization for a single level of caching. \ cache is divided into blocks
each of which has an associated fag. \ cache block represents a block of memory., The tag for a
cache block indicates what memory block it holds. Cache blocks are grouped into sefs. .\ memory
block may reside in the cache in exactly one set. but mayv reside in anv block within the set. \
cache with sets of size n is said to be n-way associative. If n=1. the cache is called dircet-mapped.
Some caches have valid bits. to indicate what sections of a block hold valid data. \ subblock is
the smallest part of a cache with which a valid bit is associated. In this paper. subblock place ment
implies a subblock of one word, i.e., valid bits are associated with each word. Moreover. on a read
miss, the whole block is brought into the cache not just the subblock that missed. Przybyvlski [39]
notes that this is a good choice.

A memory access to a location which is resident in the cache is called a hit. Otherwise. the
mejrory access is a miss.

A read request for memory location m causes m to be mapped to a set. All the tags and valid
bits (if any) in the set are checked to see if any block contains m. If a cache block contains m. the
word corresponding to m is selected from the cache block. \ read miss is handled by copyving the
missing block from the main memory to the cache.

The way write requests are handled depends upon the write policy. The write policy describes
whether writes to the cache go immediately to main memory. In a write-through cache. writes
to the cache immediately go to main memory. In a write-back cache, writes to the cache do not
immediately go to main memory; they are just written to the cache. The writes eventually go
to main memory when a memory block is removed from the cache. Write-back caches use less
bus bandwidth than write-through caches. because multiple writes to the same location may be
coalesced into one write to main memoryv by the write back cache. whereas all the writes wonld
go to main memory with a write through cache. See [27] for a discussion of the relative merits of
write back and write through caches.

A write hit is always written to the cache. There are several policies for handling a write miss.
which differ in their performance penalties. For each of the policies. the actions taken on a write
miss are:

1. write-no-allocate:

e Do not allocate a hlock in the cache

e




e Send the write to main memory. without putting the write in the cache.
2. write-allocate, no-subblock placement:

e Allocate a block in the cache.
o Fetch the corresponding memoryv block from main memory.
o \Write the word to the cache (and to memory if write through).

3. write-allocate. subblock placement!':
If the tag matches but the valid bit is off:

o Write the word to the cache (and to memory if write through).
If the tag does not match:

» Allocate a block in the cache.
o Write the word to the cache (and to memory if write through).

o Invalidate the remaining words in the block.

Write allocate/subblock placement will have a lower write miss penalty than write allocate /no
subblock placement since it avoids fetching a memory block from main memory. In addition. it
will have a lower penalty than writc no allocate if the written word is read before heing evicted
from the cache. See Jouppi [27] for more information on write-miss policies,

A miss is a compulsory missif it is due to a memory block being accessed for the first time. A
miss is a capacity miss if it results from the cache not being large enongh to hold all the memory
blocks used bv a program. The capacity misses for a given cache size correspond to the misses in
a fully associative cache of the same size with an LRU replacement policy minus the compulsory
misses. It is a conflict miss if it results from two memory blocks mapping to the same set. [25]

The memory subsystem bandwidth may be increased by using separate caches for instructions
and data. This is called a split instruction-data cache. The memory bandwidth is increased since a
data access and an instruction fetch may be handled at the same time. \\ cache where instructions
and data gc to the same cache is called a unified cache. This paper presents results only for split
instruction-data caches.

A write buffer may be used to reduce the cost of writes to main memoryv. A write bufferis a
queue containing writes that are to he sent to main memory. When the C'PU does a write. the
write is placed in the write buffer and the CPU continues without waiting for the write to finish.
The write buffer retires entries to main memory using free memory cyvcles. There are situations
when the write buffer is not fully effective in preventing stalls on writes to main memory. First. if
the CPU writes to a full write buffer, the CPU must wait for an entry to hecome available in the
write buffer. Second, if the CPU reads a location which is queued up in the write buffer. the CPU
may need to wait until the write buffer is empty. Third. if the CPU issues a read to main memory
while a write is in progress. the C'PU must wait for the write to finish.

Main memory is divided into DRAM pages. Page-mode writes reduce the latency of writes to
the same DRAM page when there are no intervening memory accesses to another DRAM page.
Page-mode writes work as follows. DRAMs are organized internally as arrays. and all the locations
on a DRAM page reside on the same row in the DRAMs which implement main memory. This fact
can be used to speed up a sequence of writes to one DRAM page. A\ DRAM is updated in a read-
modify-write cycle: an array row is latched into a row buffer. the row buffer is modified. and then
written back to the array. \ sequence of writes to the same DRAM page can update the row while
it is held in the row buffer. and avoid the read and write cvcles for all but the first and last writes,
respectively. This improves write speed significantly. For example. on a DECStation 5000/200. a
“non-page-mode write takes 5 cveles. while a page-mode write takes | evele. Main memory is said

"Recall subblock size s assnmed to be | word.




% check for heap overflow
cmp alloc+12,top
branch-if-gt call-gc

% write the object

store tag, (alloc)

store ra,4(alloc)

store rd,8(alloc)

% save pointer to object
move alloc+4,result

% add 12 to alloc pointer
add alloc,12

Figure 1: Pseudo-assembly code for allocating an object

to be operating in page mode when DRAM rows are held in row buffers across memory accesses.
It is thrown out of page mode when a memory access to a different DRAM page is made. It may
also be thrown out of page mode for other machine-specific reasons (such as refreshes). Page-mode
writes are especially effective at handling writes with high spatial locality. such as those seen when
saving registers at a procedure call or when doing sequential allocation.

2.1.2 Memory subsystem performance

This section describes two metrics for measuring the performance of memory subsyvstems. One
popular metric is the cache miss ratio. The cache miss ratio is the number of memory accesses
which miss divided by the total number of memory accesses. Since different kinds of memory
accesses usually have different miss costs, it is useful to have miss ratios for each kind of access.

Cache miss ratios alone do not measure the impact of the memory subsystem on overall svstem
performance. A metric which better measures this is the contribution of the memory subsyvstem to
CPI (cycles per useful instruction?). CPI is calculated for a program as number of C'PlU cyeles to
complete the program / total number of useful instructions ezecuted. It measures how efficiently the
CPU is being utilized. The contribution of the memory subsystem to CPI is calculated as number of
CPU cycles spent waiting for the memory subsystem / total number of useful instructions erecuted.
As an example, on a DECStation 5000/200, the lowest C'PI possible is 1, completing one instruction
per cycle. If the CPI for a program is 1.50, and the memory contribution to CPIis 0.3, 20% (0.3/1.5)
of the CPU cycles are spent waiting for the memory subsystem (the rest may be due to other causes
such as nops, multi-cycle instructions like integer division. etc.). CPI is machine dependent since
it is calculated using actual penalties.

2.2 Copying garbage collection

A copying garbage collector [22. 4] reclaims an area of memory by copying all the live (non-
garbage) data to another area of memory. This means that all data in the garbage-collected area
is now garbage, and the area can be re-used. Since memory is always reclaimed in large contiguous
areas, objects can be sequentially allocated from such areas at the cost of only a few instructions.
Figure 1 gives an example of pseudo-assembly code for allocating a cons cell. ra contains the car
cell contents, rd contains the cdr cell contents. alloc is the address of the next free word in the
allocation area, and top contains the end of the allocation area.

2 All instructions besides nops are considered as nseful. A nop (null operation) instrnction is a software-controlled
pipeline stall.




The SML/NJ compiler uses a simple generational copving garbage collector [2]. Memory is
divided into an old generation and an allocation area. New objects are created in the allocation
area; garbage collection copies the live objects in the allocation area to the old generation freeing up
the allocation area. Generational garbage collection relies on the fact that most allocated objects
die young; thus most objects (about 99% [1. p. 206]) are not copied from the allocation area. This
makes the garbage collector efficient. since it works mostly on an arca of memory where it is very
effective at reclaiming space.

The most important property of a copving collector with respect Lo memory subsystem behavior
is that allocation initializes memory which has not been touched in a long time and is thus unlikelv
to be in the cache. This is especially true if the allocation area is large relative 1o the size of the
cache since allocation will knock evervthing out of the cache. This means that caches which cannot
hold the allocation area will incur a large number of write misses,

For example consider the code in Figure 1. Assmme that a cache write miss costs 16 CPU eveles
and that the block size is -} words. On average. every fourth word allocated canses a write miss.
Thus. the average memory subsystem cost of allocating a word on the heap is | cveles. The average
cost for allocating a cons cell is seven cvcles (at one cvcle per instruction) plus 12 cveles for the
memory subsystem overhead. Thus. while allocation is-cheap in terms of instruction counts. it may
be expensive in terms of machine cycle counts.

2.3 Standard ML

Standard ML (SML) [35] is a call-by-value. lexically scoped language with higher-order functions,
with many of the features deemed good by the programming language commmnnity. It has garbace
collection to automate the management of heap storage. This eliminates two common kinds of
programming errors that occur with explicit storage management. memory leaks and dangling
pointers. Memory leaks occur when memory is never deallocated. and dangling pointers oceur
when memory is deallocated too soou. SML is staticallvy typed. so many programming errors are
caught at compile-time. The type system is polvmorphic. and tyvpes are inferred automatically
by the compiler. so the type system is flexible vet not an impediment to the programmer. The
language is provably safe, that is. there are no holes in the type system and a program alwayvs has a
well-defined behavior. SML has a sophisticated module system to support the development of large
programs. The module svstem provides for static type-checking of the interfaces between modules.
as in Ada and Modula-3. It has a dvnamically-scoped exception mechanism to allow programs to
handle unusual conditions.

SML encourages a non-imperative programming stvle. Variables cannot be altered once they
are bound, and by default data structures cannot be altered once they are created. Lisp’s rplaca
and rplacd do not exist for the default definition of lists in SML. The only kinds of assignable data
structures are ref cells and arrays®. which must be explicitly declared. To emphasize the point.
assignments are permitted but discouraged as a general programming style. The implications of
this non-imperative programming style for compilation are clear: SML programs tend to do more
allocation and copying than programs written in imperative languages.

SML is most closely related to Lisp and Scheme [11]. Implementation techniques for one of these
languages are mostly applicable to the other languages. with the following caveats: SML programs
tend to be less imperative than Lisp or Scheme programs and Scheme and SML programs use
functions calls more frequently than Lisp. since recursion is the usual wav to achieve iteration in
those languages.

2.4 SML/NJ compiler

The SML/NJ compiler [1] is a publicly available compiler for SML. We used version 0.91. The
compiler concentrates on making allocation cheap and function calls fast. Nlocation is done in-

"Although the language definition omitted arravs, all implementations have arravs,




line, except for the allocation of arrayvs. Aggressive function inlining is used 1o eliminate functions
calls and their associated overhiead. PFunction arguments are passed in registers when possible.
and register targeting is used to minimize register shuffling at function calls. .\ split caller/callee-
save register convention is used to avoid excessive spilling of registers [R]. The compiler also does
constant-folding, limited code hoisting. uncurryving, and instruction scheduling.

The most controversial design decision in the compiler was to allocate procedure activation
records on the heap instead of the stack {1. 6]. In principle. the presence of higher-order functions
means that procedure activation records must be allocated on the heap. With a suitable analysis.
a stack can be used to store most activation records [31]. However. using only a heap simplifies
the compiler. the run-time svstemn [3]. and the implementation of first-class continuations [23].
The decision to use only a heap was controversial because it greatly increases the amonnt of heap
allocation, which is believed to cause poor memory subsystem performance,

3 Related Work

There have been many studies of the cache behavior of svstems using heap allocation and some
form of copying garbage collection. Peng and Sohi [38] examined the data cache behavior of small
Lisp programs. They used trace-driven simulation. and proposed an A\LLOCATE instruetion for
improving cache behavior. which allocates a block in the cache without fetching it from memory.
Wilson et al. [48. 49] argued that cache performance of programs with generational garbage col-
lection will improve substantially when the voungest generation fits in the cache. Koopman «f
al. [30] studied the effect of cache organization on combinator graph reduction. an implementa-
tion technique for lazy functional programming languages. They observed the importauce of a
write-allocate policy with subblock placement for improving heap allocation. Zorn [30] studied
the impact of cache behavior on the performance of a Common Lisp svstem. when stop-and-copy
and mark-and-sweep garbage collection algorithms were used. He concinded that when programs
are run with mark-and-sweep thev have substantially better cache locality than when run with
stop-and-copy.

Our work differs from previous work in two important ways. First. previous work used the
overall miss ratio as the performance metric. which is a misleading indicator of performance. The
overall miss ratio neglects the fact that read and write misses may have different costs. Also. the
overall miss ratio does not reflect the rates of reads and writes. which may substantially affect
performance. We use memory subsystem contribution to CPI as our performance metric. which
accurately reflects the effect of the memory subsystem on program running time. Second. previous
work did not model the entire memory subsystem: it concentrated solely on caches. Memoryv
subsystem features such as write buffers and page-mode writes interact with the costs of hits and
misses in the cache and should be simulated to give a correct picture of memory subsystem behavior.
We simulate the entire memory subsystem.

Appel (4] estimated CPI for the SML/NJ system on a single machine using elapsed time and
instruction counts. His CPI differs substantially from ours. Apparently instructions were under-
counted in his measurements [3].

Jouppi [27] studied the effect of cache write policies on the performance of (' and Fortran
programs. Our class of programs is different from his. but his conclusions support ours: that a
write-allocate policy with subblock placement is a desirable architecture feature. He found that the
write miss ratio for the programs he studied was comparable to the read miss ratio. and that write-
allocate with subblock placement eliminated many of the write misses. For programs compiled
with the SML/N.J compiler. this is even more important due to the high number ol write misses
caused by allocation.




4 Methodology

We used trace driven simulations to evaluate the memory subsvstem performance of programs
compiled with the SML/NJ compiler. For trace driven simulations to be useful. there must be an
accurate simulation model and a good selection of benchmarks. Simulations that make simplifving
assumptions about important aspects of the svstem heing modeled can yvield misleading results. Toy
benchmarks. or benchmarks that are not representative of the kinds of tasks the svstem is normally
used for, can be equally misleading. In this work. much effort has been devoted to addressing these
issues.

Section 4.1 describes our trace generation and simulation tools. Section L2 states our assiump-
tions and argues that they are reasonable. Section L3 describes and characterizes the benchmark
programs used in this study. Section {.1 describes the metrics used 10 present memory subsysteny
performance.

4.1 Tools

We extended QPT (Quick Program Profiler and Tracer) [33. 9. 32] to produce memory traces for
SML/NJ programs. QPT rewrites an executable program to produce compressed trace information:
QPT also produces a program specific regeneration program that expands the compressed trace
into a full trace. Because QP operates on the execntable program. it can trace both the SML code
and the garbage collector (which is written in ("), The significant trace compression achieved by
QPT allowed us to send traces to faster machines where thev could be regenerated and simulated
quickly: about 50 ps to regenerate and simulate cach memory reference on an HP 9000 model 720
machine™.

Code produced by the SML/NJ compiler presents three problems for QPT. First. SNL/NJ puts
its code in the heap. Since SML/NJ nses a copving collector. code can be moved just like data.
This creates numerous probleris: we solve them by putting SML/NJ code in the text segment. so it
is never garbage collected. Second. programs compiled with the SNL/NJ compiler have no svmbol
table information. SML/NJ makes the problem worse by interleaving data with the code. QPT
needs a symbol table to find all the code. Third. SML/NJ often implements function calls using
indirect jumps. QPT needs to know all the program points that could be targets of an indirect
jump. We solved both problems by modifving SML/NJ to produce tables that enable QPT to
find all targets of indirect jumps and to separate code from data: we enhanced QPT to use this
information.

We used Tycho [24] for the memory subsystem simulations. Tycho uses a special case of all-
associativity simulation [34] to simulate multiple caches concurrently. We extended Tyvcho in four
important ways. First, we extended Tvcho to separate read misses from write misses. Second. we
changed Tycho to simulate separate data and instruction caches simultaneously. Third. we added
a write buffer simulator to Tvcho. The write buffer simulator can concnrrently simulate a write
buffer for each cache organization being simulated hy Tvcho. The write buffer simulator also takes
page-mode writes and memory refreshes into consideration. Fourth. we added the write no allocate
write miss policy to Tvcho.

We obtained allocation statistics by using an allocation profiler buift into SML/N.J. The profiler
instruments intermediate code to increment appropriate elements of a count array on every alloca-
tion. We extended this profiler to connt the number of assignments done by SML/NJ programs.

4.2 Simplifications and Assumptions

We wanted to simulate the memory svstems as completely as we could. Thus. we tried to minimize
assumptions which might reduce the validity of our data. This section describes all the important

"'While doing cache saimulations we were also collecting additional data. such as warbage collection overbeads,

which slowed down the simufations sabstantiallv,




assumptions made in this studv and argues that they e reasonas

L.

51}

-1

Simulating write allocate /subblock placene nt il wreite wiioens S
cho does not simulate subblock placement <o we approvimare

cate/no subblock and ignoring the reads from memory that ocon: o

cause a small inaccuracy in the CPLunmbers, T he follosw e oo

when the simplification fails.

Let us suppose we have a cache block size of 2 words and a <ubibvicen -
program issutes a write to the first word. Further assume that the wern
placement. the word will he written to the cache and the <ecoma o0

will be invalidated. However. the simplified model will niark borte conn
write. If the program subsequently issnes a read of the ~econd o
regarded as a hit. Thus the CPI reported for caclhies with ~ubbioon o o
than the actual CPL. This is however a rare occurrence since SMI nroeran,-
assignments (see Section 1.3} and most writes are 1o sequential locaon-

Ignoring the effects of contert switches and systcm calls, Context switchos oo
caused by svstem calls) can affect cache performance significantiy 36 \We junone o
it is an operating system issue that affects all programs. not just proerams that oo

intensive.

Pessimistic simulation of partial word writes. Most memory snbsvatems se o s
smallest addressable unit aud also maintain error checking information on a won o

Thus. writes to partial words (bvtes. half-words. ¢ fe.) are more expensive than tad e

since the enclosing word needs to he read. modified. its error checking infornution. oo
written back. We charge 11 cveles for each partial-word write resardless of winate

is in the cache. If the word is not in the cache. the cache block is not tevehed trom o
Also. the write is not queued up in the write buffer. This is mostly consstent wirn oo
DECStation 5000/200 model of partial word writes: the kev difference is that we are e
assuming the worst case scenario (which is probably rare in practice).

This inaccuracy. however. does not have any significant impact on the acenracy ol the <y
ulations: the CPI contribution of partial word writes is negligible even with this pessimsti
model (see Section 5).

The simulations are driven by virtual addresses. The caches in many current machines are
physically indexed (notable exceptions are the SPARCs and HP series 700). This can bhe o
problem since the virtual address to physical address mapping can affect the conflicts i the
cache. However some virtual to physical mapping schemes (e.g.. a variation of Page  oloring
used in the MIPS operating system) vield similar intra-process cache conflicts as if the cache
was virtually indexed {29]. Thus. the simplification is reasonable.

Placing code in the text segment instead of the heap. This improves performance over the
unmodified SML/NJ system by reducing garbage collection overhead. since code s never
copied. and by avoiding instruction cache flushes after garbage collections.

Used default compilation settings for SML/N.J. Default compilation settings enable extensive
optimization. Evaluating the impact of these optimizations on cache behavior is bevond the
scope of this paper.

Used default garbage collection seltings

We used the default strategy for sizing the allocation area and the old generation 21 The
heap is sized as r times the size of the old generation after the old seneration is colleered,
where T is the desired mmtio of heap size to live data. r=5 was nsed for all the program enns.
The allocation area is sized as one-half of the (ree space (the heap space not occupied by the




old generation). \s the old generation grows alter cach collection of the allocation area. the
free space decrcases and the allocation area decreases. This continues uutil the old generation
is collected.

We did not investigate the interaction of the sizing strategy and cache size [19]. When the
allocation area is larger than the cache. it may be possible to improve program locality by
decreasing the size of the allocation area so that it fits in the cache. However. this wonld
probably increase garbage collection costs. Understanding these tradeolfs is bevond the scope
of this paper.

In addition to the ratio. the garbage collector is controlled by the softmar and the initial heap
size. The softmax is a desived upper limit on the heap size which is exceeded only 1o prevent
programs from running out of space. The softmax was 20M: 1the benchmark programs never
reached this limit and were able 10 always resizestheir heaps to maintain the desired ratio of
5. The initial heap size was 1M,

R. MIPS as a prototypical RISC' machine. Al the traces are for the DECStation 3000/200.
which uses a MIPS R3000 ('PU. The results should carry over to other RISC' machines but
we do not know how applicable the results are to CISC machines.

9. Allinstructions take one cyele with a perfeet memory subsystcm. On the DECStation5000/200.
this is not true for some instructions (such as multiply. etel). s far as the memory subsvs-
tem performance is concerned. multi-cycle instructions change only the write bufler ponaltios:
multi-cvelé instructions can give the write buffer more opportunitios to retire writes. Section
5.4 shows that the write-buffer overhead is small: thus the inacenracy introdneed by 1his
assumption will be negligible.

10, Assuming CPU cycle time docs not vary with mcmory organization, The CPT ealeulations
assume that the CPU cyvele time remains the same for different memory organizations. This
may not be the case. since the CPU cycle time depends on the cache access time, which may
be different for different cache organizations. For example, a 128K cache mayv take longer to
access than an 8K cache.

4.3 Benchmarks

Table 1 describes the benchmark programs®. Knuth-Bendix, Lergen. Life. Simple. VLIW, and
YACC are identical to the benchmarks measured by Appel [1]%. Table 2 gives the sizes of the
benchmarks in terms of lines of SML code (excluding comments and blank lines). maximum heap
size in kilobytes, size of the compiled code in kilobytes (does not include the garbage collector and
other run-time support code which is about 60K)". and run time. in seconds. on a DE('Station
5000/200. The run times are the minimum of five runs (see Section 5.6).

Table 3 characterizes the benchmark programs according to the number and kinds of memory
references they do. All numbers are reported as a percentage of instructions. The Reads. Writes.
and Partial writes columns list the reads. full-word writes. and partial-word writes done by the
program and the garbage collector: the assignments colimn lists the non-initializing writes done
by the program only. The Nops column lists the nops executed by the program and the garbage
collector. Note that all the benchmarks have long traces: most related works use traces that are
an order of magnitude smaller. Also, note that the benchmark programs do few assignments: the
majority of the writes are initializing writes,

. .
’Available from the authors.
®The description of these benchmarks have been copied from (4].

"The code size includes 207K for the standard libraries.




Table 2: Sizes of Benchmark Programs

| Program Description ]

Cw The Concurrency Workbench [15] is a tool for analvzing networks |
of finite state processes expressed in Milner's C‘alculus of Communi-
cating Systems. The input is the sample session from Section 7.5 of
[15]. !

Knuth-Bendix | An implementation of the Knuth-Bendix completion algorithm. im- |
plemented by Gerard Huet. processing some axioms of geometry.

Lexgen A lexical-analyzer generator. implemented by James S. Mattson and
David R. Tarditi [7]. processing the lexical description of Standard

. ML

Life The game of Life, written by Chris Reade [40}. running 50 generations
of a glider gun. It is implemented using lists.

PIA The Perspective Inversion \lgorithm [17] decides the location of an
object in a perspec.ive video image.

Simple A spherical fluid-dvnamics program. developed as a “realistic™ FOR-
TRAN benchmark [16]. translated into 1D [21]. and then translated |
into Standard ML by Lal George.

VLIW A Verv-Long-Instruction-Word instruction scheduler written hy John |
Danskin |

YACC A LALR(1) parser generator. implemented by David R. Tarditi [H1].
processing the grammar of Standard ML. i

Table 1: Benchmark Programs
Size Run time
Program Lines [ Heap size (K) l Code size (K) | Non-gc (sec) [ Gic (sec)
CW 5728 1107 894 22,74 3.09
Knuth-Bendix 491 2768 251 13.47 118
Lexgen 1224 2162 305 15.07 1.06
Life 111 1026 221 16.97 0.19
PIA 1454 1025 291 6.07 .34
Simple 999 11571 314 25.58 +.23
VLIW 207 1088 486 23.70 1.91
YACC 5751 1632 580 4.60 1.8




| Program ] [nst Fetches [ Reads (%) [ Writes (%) [ Partial Writes (%) ] Assignments (‘Z‘)J Nops (%) ]
CW 523,245,987 17.61 11.61 0.01 TEY 13.21
Knuth-Bendix | 312,086,438 19.66 22.31 0.00 0.00 5.92
Lexgen 328,422,283 16.08 10.44 0.20 0.21 12.33
Life 413.536.662 12.18 9.26 0.00 0.00 1545
PIA 122,215,151 25.27 16.50 0.00 0.00 ®.39
Simple 604.611.016 23.86 11.06 0.00 0.05 7.58
VLIW 399,812,033 17.89 15.99 0.10 0.77 9.04
YACC 133.043,324 18.49 14.66 0.32 0.38 .14

Table 3: Characteristics of benchmark programs

Allocation | Escaping Known Callee Saved Records Other
Program (words) % | Size % | Size % | Size % | Size % | Size
CwW 56,467,440 1.0 | 412 3.3 15390 ] 67.2 6.20 | 19.5 | 3.01 6.0 1.00
Knuth-Bendix | 67.733,930 | 37.6 [ 6.60 | 0.1 | 15.22 | 49.5 490 [ 1271 3.00 | 01| 15035
Lexgen 33.046.349 3.4 6.20 5411296 | 72.7 6.40 | 15.1 1 3.00 3.7 6.97
Life 37,840,681 0.2 | 3.45 0.0 ] 15.00 | 77.8 5.52 | 22.2 ] 3.00 0.0 ] 10.29
PIA : 18,841.256 0.4 1556 [ 2801 11.99 | 25.0 4.69 1127 1 3.41 | 33.9 3.22
Simple RO.T61.644 1.0 | 5.70 1.1} 15.33 | 68.1 6.43 .41 3.00 | 185 3.41
VLIW S9.097.032 | 99 15221 6.0 | 26.62 | 61.8 T.6T [ 203 301 211 260
YACC [ LT.015.250 2.3 ) 4.83 1153 ] 1535 | 54.8 To4 ] 237 ] 3.04 1001 10.22

Table 1: Allocation characteristics of benchmark programs

Table 4 gives the allocation statistics for each benchmark program. All allocation and sizes are
reported in words. The Allocation column lists the total allocation done by the benchmark. The
remaining columns break down the allocation by kind: closures for escaping functions. closures for
known functions. closures for callee-save continuations®, records. and others (includes spill records.
arrays, strings. vectors, ref cells, store list records. and floating point numbers). For each allocation
kind, the % column gives the total words allocated for objects of that kind as a percentage of total
allocation and the Size column gives the average size in words. including the 1 word tag, of an
object of that kind.

4.4 Metrics

Following the lead of recent work on memory subsystem performance. we state cache performance
numbers in cycles per useful instruction (C'PI). All instructions besides nops are considered useful.
Unlike miss ratios. CPI numbers give an indication of how fast a program will run. On the down
side. CPI numbers are machine dependent because actual penalties are used in their calculations.

Table 5 lists the penalties used in our simulations. These numbers are derived from the penalties
for the DECStation 5000/200. but are similar to those in other machines of the same class. Writes
have different penalties depending on whether or not subblock placement is being used. the block
size (and thus the fetch size), and whether the writes hit or miss in the cache. For caches with
subblock placement. write hits or misses have no penalty (besides write buffer related costs)®. For

3Closures for callee-save continnations can be trivially allocated on a stack in the absence of first class
continnations.

’In an actnal implementation, the penalty of a miss may be one evele since unlike hits, the tag needs to be written




| Task | Penalty (in cycles) |

Non-page-mode write 3
Page-mode write 1
Page-mode flush 4
Read 16 bytes from memory 15
Read 32 bytes from memory 19
Refresh period 195
Refresh time 3
VWrite hit or miss (subblocks) 0
Write hit (16 byvtes. no subblocks) 0
Write hit (32 bvtes. no subblocks) 0
Write miss (16 bytes. no subblocks) 15
Write miss (32 bytes, no subblocks) 19

Table 5: Penalties of memory operations

caches without subblock placement, write hits have no penalty (besides write huffer related costs)
but write misses cost 15 or 19 cvcles (plus write buffer penalties) for block sizes of 16 and 32 bytes
respectively. The read miss and instruction fetch miss penalty depends on the block size: it is 15
cycles for a block size of 16 bytes and 19 cycles for a block size of 32 bytes.

We used a DRAM page size of 4K in the simulation of page-mode writes. Page-mode flush is
the number of cycies needed to flush the write pipeline after a series of page-mode writes.

TLB data is reported as (CPI — CPI of perfect memory subsystem!?). This is the TLB contri-
bution to the CPI. This metric is used instead of just CPI to allow us to present the measurements
for all the benchmarks in one chart. A virtual memory page size of 4K was used in the simulations.
The penalty of a TLB miss is 28 cycles!!.

5 Results and Analysis

In Section 5.1 we present a qualitative analysis of the memory behavior of programs compiled with
SML/NJ. In Section 5.2 we list the cache and TLB configurations simulated and explain why they
were selected. In Sections 5.3, 5.4, and 5.5 we present data for memory subsystem performance.
write buffer performance, and TLB performance. In Section 5.6 we validate the simulations. In
Section 5.7 we present an analytical model which allows us to extend the memory subsystem
performance results to programs with different allocation behavior. In Section 5.8 we summarize
the results.

to the cache after the miss is detected. This will not change our results since it adds at most 0.02-0.05 to the C'PI
of caches with subblock placement.

19The CPI of a perfect memory subsystem is the total number of instructions divided by the number of useful
instructions. :

"'This is a weighted average of the various kinds of TLB misses under Mach 3.0 and is derived from the data in
[46].




IWrite Policy [\\"rile Miss Policy ].\'ul)l)lo('ks [ ,\sso('[ Block Size I( ‘ache Sizes]\\'rit(' Buffer }

through allocate ves 1.2 116, 32 byvtes [3N-512K -6 deep
through allocate no 1.2 16, 32 bytes | 8K-512Ix 6 deep
through no allocate no 1.2 | 16,32 bytes [RN-512K |6 deep

Table 6: Cache organizations studied

5.1 Qualitative Analysis

Recall from Section 2 that SML/NJ uses a copyving collector. The most important property of a
copying collector with respect to memory subsystem beliavior is that allocation initializes memory
in an area that has not been touched since the last garbage collection. This means that for caches
that are not large enough to contain the allocation area there will be a large number of write misses.
The slowdown that the write misses translates into depend on the memory subsystem organization.

Recall from Section 4.3 that SML/NJ programs have the following important properties. First.
they do few assignments: the majority of the writes are initializing writes. Second. programs do
heap allocation at a furious rate: 0.1 to 0.22 words per instruction. Third. writes come in bunches
because they correspond to initialization of a newly allocated area.

The burstiness of writes combined with the property of copving collectors mentioned above
suggests that an aggressive write policy is necessaryv. In particular. writes should not stall the
CPU. Memory subsystem organizations where the C'PU has 1o wait for a write to he written
through (or back) to memory will perform poorly. Even memory subsvstems where the CPU does
not need to wait for writes if thev are issued far apart (e.g.. 2 cveles apart in the HP 9000 series
700) may perform poorly due to the bunching of writes. This leads 1o two requirements ou the
memory subsystem. First. a write buffer or fast page mode writes are es.ential to avoid waiting
for writes to memory. Second, on a write miss. the memory subsvstem must avoid reading a cache
block from memory if it is going to be written before being read. Of course. this requirement
only holds for caches with a write-allocate policy. Subblock placement {30]. a block size of | word.
and the ALLOCATE instruction [38] can all achieve this. Since the effects on cache performance
of these features are so similar, we talk just about subblock placement. For large caches. when
the allocation area fits in the cache and thus there are few write misses, the henefit of subblock
placement will be reduced.

5.2 Cache and TLB configurations simulated

The design space for memory subsystems is enormous. There are many variables involved and the
dependencies between them are complex. Therefore we could study only a subset of the memory
subsystem design space. In this study, we restrict ourselves to features found in currently popular
RISC workstations. Exploration of more exotic memory subsystem features is left to future work
(see Section 6). Table 6 summarizes the cache organizations simulated. Table 7 lists the memory
subsystem organization of some popular machines.

We simulated only separate instruction and data caches (i.¢.. no unified caches). While many
current machines have separate caches (e.g., DE('Stations, HP 700 series). there are some exceptions
(notably SPARCStations).

We simulated cache sizes of 8K to 512K. This range includes the primary caches of most current
machines (see Table 7). We consider only one-way (direct mapped) and two-way set associative
caches (with LRU replacement).

We simulated block sizes of 16 byvtes and 32 hvtes. Moreover, fetch size is kept the sime as the
block size: in particular. in caches with subblock placement. a read miss brings in the whole block.
not just the subblock ¢ansing the miss. In effect. this is prefetehing. Przyvbyiski [39] notes that
making the fetch size equal to the block size is a good choice with respect to memory subsvstem
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[Architecture TWrite Policy[Write Miss Policy [Write Buifer[Subblocks[ Assoc[Block Size1Cache Size

DS3100 [19] through allocate 1 deep 1 P hyvtes 64K

DS5000/200 {18] through allocate 6 deep ves 1 16 bytes |64

HP 5000 [43] back allocate none no 1 32 bvies {61 2M

SPARCStation II [17]{through no allocate 1 deep no | 32 bytes (64N
Note:

o SPARCStations have unified caches.
e Most HP 9000 series 700 caches are much smaller than 2N 123K instraction cache and 2561 daac cache for madets 720

and 730, and 256K instruction cache and 236K data cache for model 750,

o The DS5000/200 actually has a block size of four bytes with a fetch size of sixteen bytes. This s stvanger than snbblock

placement since it has a full tag on every “subblock™.

o The higher end HP 9000 machines (mudel 735 and above) provide a cache-conteal hint in ther store imsteactionsgi )
The hint can specify that a block will be overwritten before being read: this avoids the read if the write misses, The
SML/NJ compiler may be able to extract much of the benefits of subblock placement from this feature.

Table 7: Memory subsystem organization of some popular machines

performance. Przvbyiski also notes that block sizes of 16 or 32 bytes optimize the read aceess
time for the memory parameters used in the CPI calenlations tsee Table 5). Hercafter, whenever
subblock placement is mentioned. it is assnmed that the feteh size oguals bloek size.

We report data ouly tor write-through caches but the CPLHor write-hack caches can he mlerred
from the graphs for write-through caches. While write-through and write-back caches have identical
misses. their contribution to the CPI may differ due to two reasons, Firsto a write hit or niss in
a write-back cache may take one cycle more than in a write-through cache: unlike & write-through
cache, a write-back cache must probe the tag before writing to the cache [27]. The araphs for
write-through caches can be easily adjusted to account for this to obtain the graphs for write-back
caches. For instance, if the program has w writes and n useful instructions. then the C'P[ for a
write-back cache can be obtained by adding w/n to the ('PI of the write-through cache with the
same size and configuration. For VLIW w/n is 0.18. Second. write-through and write-back caches
may have different write buffer penalties becanse theyv do writes to main memory with different
frequencies and at different points. We expect the write buffer penalties for write-back caches to
be smaller than those for write-through caches since writes to main memory are less frequent for
write-back caches than for write-through caches. This difference between write-through and write-
back caches is likely to be negligible since the write-buffer penalty is small even for write-through
caches.

We varied write buffer depths from | to 6 entries for write-throngh caches with the write
allocate /subblock placement organization. We also simulated memory subsystems with and without
page-mode writes.

We simulated fully associative, unified TLBs from | to 64 entries with LRU replacement policy. .
Some machines (such as the HP 9000 series) have separate instruction and data TLBs. From
Section 5.3 it is clear that for the benchmarks even small unified TLBs perform well.

Two of the most important cache parameters are write allocate versus write no allocatc and sub-
block placement versus no subblock placement. Of these. the combination write no allocate /subblock
placement placement offer no improvement over write no allocate /no subblock placement for cache
performance. Thus. we did not collect data for the write no allocate /subblock placement configura-
tion.

We restrict ourselves onlv to the first two levels of the memory hierarchy. which on most current
machines corresponds to the primary cache and main memory. The results, however, are mostly
applicable when the second level is a secondary cache and the cost of accessing the secondary cache

R .




is similar to the cost of accessing main memory in the DECStation 3000/20012. In such machines.
there is a memory subsyvstem contribution to the CPIthat we did not measure: a miss on the second
level cache. Therefore the ('Pl obtained on these machines can be higher than that reported here.

We did not simulate the exotic features appearing on some newer machines, such as stream
buffers, prefetching, scoreboarding, and victim caches. These features can reduce the number of
cache misses and miss costs. Further work is needed to understand the impact of these features on
the performance of heap allocation.

5.3 Memory Subsystem Performance

We present memory subsyvstem performance in summary graphs and breakdown eraphs. ach
summary graph summarizes the memory subsystem performance of one benchmark program for a
range of cache sizes (SK to 312K). write-miss policies (write allocate or write no allocate). snbblock
placement (with or without). and associativity (1 or 2). Each curve in a summary graph corresponds
to a different memory subsystem organization. There are two summary graphs for each program.
one for a block size of 16 bytes and another for a block size of 32 bytes. Each breakdown graph
breaks down the memory subsystem overhead into read misses. write misses (if there is a penalty
for write misses). instruction fetch misses. write-buffer overhead. and partial-word write overhead
for one configuration in a summary graph. The write-buffer depth in these graphs is fixed at 6
entrics.

In this section we present only the summary graphs for VLIW (Fignre 2). The snmmary graphs
for other programs are similar and are given in Appendix \. Figures 3. 1oand 5 are the breakdown
graphs for VLIW for the 16 byte block size configurations: the remaining hreakdown araphs Tor
VLIW are similar and omitted for conciseness. The hreakdown graphs for the other benchinarks are
similar (and predictable from the summary graphs) and are thus omitted for the same reason!?,

In the summary graphs. the nops curve is the base CPIL: the total number of instrncetions
executed divided by the number of useful (not nop) instructions executed: this corresponds to
the C'PI for a perfect memory subsystem!*. For the breakdown graphs. the nop area is the (Pl
contribution of nops: read miss is the ('PI contribution of read misses: write miss is the (Pl
contribution of write misses (if any). inst fetch miss is the ('PI contribution of instruction fetch
misses: write buffer is the ('Pl contribution of the write buffer: partial word is the CPI contribution
of partial-word writes.

The 64K point on the write alloc. subblock. assoc=1 curves corresponds closely to the DEC'Sta-
tion 5000/200 memory subsystem.

In the following subsections we describe the impact of write-miss policy and subblock placement.
associativity. block size. cache size. write buffer. and partial-word writes on the memory subsvstem
performance of the benchmark programs.

5.3.1 Write Miss Policy and Subblock Placement

From the summary graphs. it is clear that the hest cache organization we studied is write allo-
cate /subblock placement: it substantially outperforms all other confignrations. Surprisingly. for
sufficiently large caches with the write allocate /subblock place ment organization. the memory sub-
system performance of SML/NJ programs is acceptable: the overhead due to data cache misses
ranges from 3% to 13% (arithmetic mean 9%) for GAK direct mapped caches'™ and 1% to 13%
(arithmetic mean 9% ) for 32K two-way associative caches, The memory subsvstem performance of

2For instance, Borg et al. [10] use 12 cycles as the latency for going to the second level cache and 200 -250 cvcles
for going to memory.

3The full set of graphs is available via anonyvmous ftp from ibis.cs.umass.edu in pub/memory-subsvstem.

1

Ynops constitute between 5.9% and 1504 of all instractions executed for the benchmarks (see Section §3)

"Recall that this corresponds to the DECStation 50007200 memory subsvstem.
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SML/NJ programs on the DLCStation 5000/200 is comparable to that of (" and Fortran programs
[12]; Chen and Bershad find that the data cache overhead of € and Fortran programs ranges {rom
less than 1% to 66%. with an arithmetic mean of X%, [t is worth emphasizing that the memory
subsystem performance of SML/NJ programs is good on some current machines despite the very
high miss rates: for a 64k write allcate /no subblock placement organization with a block size of 16
bytes. the write miss and read miss ratios for VLIW are 0.23 and 0.02 respectivelv.

Recall that in Section 5.1 we argued that the benefit of subblock placement would be substantial,
but that the benefit would decrease for larger caches. The summary graphs indicate that the
reduction in benefit is not substantial even for 128K cache sizes: however. the benefit of subblock
placement decreases sharply for larger caches for six of the benchmark programs. This snggests
that the allocation area size of six of the benchmark programs is 256K to 512K.

The performance of write allocate /no subblock is almost identical to that of write no allocate /no
subblock (Leroy is an exception)'”. This suggests that an address is being read soon after heine
written: even in an 8K cache. an address is read after being written before it is evieted from the
cache (if it was evicted from the cache before being read. then write allocate /no subblock would
have inferior performance). The only difference between these two schemes is when a cache block
is read from memory. In one case. it is brought in on a write miss: in the other. it is brought in
on a read miss. Because SML/NJ programs allocate sequentially and do few assignments. a newly
allocated object remains in the cache until the program has allocated another C byvres. where Cis
the size of the cache. Since the programs allocate 0.:4-0.9 bytes per instruction. our results snggest
that a read of a block occurs within 9K 20K instructions of its being written.

5.3.2 Changing Associativity

From Figure 2 we see that increasing associativity improves all organizations. However the improve-
ment in going from one-wayv to two-way set associativity is much smaller than the improvement
obtained from subblock placement: in most cases. it improves the C'Pl by less than 0.1, The
maximum benefit from higher associativity is obtained for small cache sizes (less than 16K). How-
ever, increasing associativity may increase ('PU cvcle time and thus the improvements may not be
realized in practice [25].

From Figures 3. 4, and 5 we see that higher associativity improves the instruction cache per-
formance but has little or no impact on data cache performance. Surprisingly. for direct mapped
caches (Figures 3 (a). 4 (a), and 5 (a)) the instruction cache penalty is substantial for 128K or
smaller caches. For caches with subblock placement. the instruction cache penalty can dominate
the penalty for the memory subsystem. The improvement observed in going to a two-way associa-
tive cache suggests that a lot of the penalty from the instruction cache is due to conflict misses
and that from the data cache is due to capacity misses: the data cache is simply not big enough
to hold the working set. When the benchmark programs are examined. the performance of the
instruction cache is not surprising: the code consists of small functions with frequent calls. which
lowers the spatial locality. Thus. the chances of conflicts are greater than if the instructions had
strong spatial localitv.

5.3.3 Changing Block Size

From Figure 2 we see that increasing block size from 16 to 32 byvtes also improves performance.
For the write allocate organizations. an increased block size decreases the number of write misses
caused by allocation. When the allocation area does not fit in the cache. doubling the block size can
halve the write-miss rate. Thus. larger block sizes improve performance when there is a penalty

8Chen and Bershad use (veles/Instruction rather than Cveles/Useful Instruction which lowers their memory
subsystem overhead.

'"The difference between write allocate /uo subblock and write no allocate /no subblock 1 so small in most graphs
that the two curves overlap.
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for a write miss [30]. [n particular. larger block sizes have little to offer to caches with write
allocate/subblock placcment. From Figure 2 we see that the write no allocate organizations henefit
just as much from larger block size as write allocate/no subblock placement: this suggests that the
spatial locality of the reads is comparable to that of the writes.

Note that subblock placement improves performance more than even two-way associativity and
32 byte blocks combined.

5.3.4 Changing Cache Size

Three distinct regions of performance can be identified for cache sizes. The first region corresponds
to the range of cache sizes when the allocation area does not fit in the cache (i.e.. allocation
happens in an area of memoryv which is not cache resident). For most of the benchmarks. this
region corresponds to cache sizes of less than 256K (for Simple and Knuth-Bendix this region
extends bevond 312K). In this region. increasing the cache size uniformly improves performance
for all configurations. However. the performance improvement from doubling the cache size is small.

From the breakdown graphs we see that in the first region the cache size has little effect on the
data cache miss contribution to C'PI. Most of the improvement in C'PI that comes from increasing
the cache size is due to improved performance of the instruction cache. As with associativity. cache
sizes have -interactions with the cycle time of the CPU: larger caches can take longer to access.
Thus. improvement due to increasing the cache size may not be achieved in practice.

The second region ranges from when the allocation area begins to fit in the cache until the
allocation area fits in the cache. For most of the benchmarks (once again excepting Simple and
Knuth-Bendix). this region corresponds to cache sizes in the range 256K to 312K, In this region.
increasing the cache size sharpiy improves the data cache performance for memory organizations
without subblock placement. However. increasing the cache size in this region has little to offer
for instruction cache performance because the instruction cache miss penalty is already low at this
point.

The third region corresponds to cache sizes when the allocation area fits in the cache. For five
of the benchmarks, this region corresponds to caches larger than 512K (for Lexgen. Knuth-Bendix.
and Simple this region starts at larger cache sizes). In this range, increasing the cache size has
little or no impact on memory subsystem performance because evervthing remains cache resident
and thus there are no capacity misses to eliminate.

5.3.5 Write Buffer and Partial-Word Write Overheads

From the breakdown graphs we see that the write buffer and partial word write contribution to the
CPI is negligible. A six deep write buffer coupled with page-mode writes is sufficient to absorb the
bursty writes. As expected, memory subsystem features which reduce the number of misses (such
as higher associativity and larger cache sizes) also reduce the write buffer overhead.

®For Lexgen this region extends a little bevond 312K.
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5.4 Write-buffer depth

In Section 5.3.5 we showed that a six-deep write buffer coupled with page-mode writes was able 10
absorb the bursty writes in SML/NJ programs. In this section we explore the impact of write hoffer
depth on the write-buffer contribution to C'PL. Since the speed at which the write buffer can retire
writes depends on whether or not the memory snbsyvstem las page-mode writes, we condncted 1wo
sets of experiments. In the first set. we simulated a memory subsystem with page-mode writes and
varied the write-buffer depth from [ 1o 6. In the second set. we simulated a memory subsvstem
without page-mode writes and varied the write-buffer depth from | to 6. We conducted this study
for two of the larger benchmarks: CW and VLIW. We fixed the block size at 16 bytes and the write
miss policy at write allocate /subblock placcinent.

Figure 6 gives the write buffer overheads for VLIW with caches of associativity one and two and
in a memory subsystemn with page-mode writes: Fioure 7 does the same in a memory ~ubsyvstom
without page-mode writes. The graphs plot the CPL contribution of the write buffer acains
cache size: there is one curve for each write-buffer depth. Graphs for CW are omitted for space
considerations. Increasing the cache size or associativity rednces the number of read and instruction
fetch misses, and thus reduces the number of main memory transactions. This reduces the write-
buffer contribution to the C'PI in four ways:

1. . The write buffer has more cyveles to retire its entries and hence the write buffer full <1alls
occur less frequently!?.

2. In the memory subsvstem with page-mode writes, the main memory s thrown ont of paee
mode less frequently. allowing the write bhuffer 10 retire writes quicklv=". This reducos he
write buffer full stalls.

3. Since there are fewer reads to main memory. the number of times a read 1o main memory
needs to wait for a write to finish is less. thus reducing the main memory busy delavs.

4. Since there are fewer reads to main memory. a read to main memory conflicts with a write
buffer entry less frequently, thus reducing the write buffer conflict delays.

In memory subsystems with page-mode writes (Figure 6). the difference between the ('Pl con-
tribution of a one-deep write huffer and a six-deep write buffer is less than 0.05. This is surprisingly
small considering the burstiness of the writes. This is due to the effectiveness of page-mode writes:
an example illustrates this:

Suppose that a SML/NJ program is allocating (and initializing) an object which is 1 words
in size and that the write buffer is one deep. Further suppose that the write buffer is emptyv and
that the instructions doing the allocation all hit in the instruction cache. The first write does not
stall the CPU since the write buffer is empty. The next write comes one cycle later. finds a full
write buffer, and thus stalls the CPU. After 4 cycles (see penalties in Table 5). the write is queued
up in the write buffer. This write. however is highly likely to be on the same DRAM page as the
previous write (since it is to the next address) and will therefore take only one cvele to complete.
All subsequent writes to initialize this object find an empty write buffer since they all complete in
one cycle due to page-mode writes.

As noted above, all the writes to initialize an object are likely to be on the same page and can
thus take advantage of page-mode writes. Due to sequential allocation, it is likelv that writes to
initialize objects allovated one after another will also be on the same DRAM page. Thus. in the
hest case (with no read misses and refreshes), a write buffer full delay will happen only once per
N words of allocation. where N is the size of the DRAM page. Thus. the write buffer depth has
little performance impact on SML/N.J programs if the memory subsvstem has page-mode writes.

2 . o .
"Recall that a write buffer uses free memorv cveles to retire is writes,

©*Recall that reads throw main memory out of page mode.
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To confirm this explanation. we measured the probability of two consecutive writes being on the
same DRAM page. This probability (averaged over the benchmarks) was 96%.

The small impact of write buffer depth on performance does not imply that a write buffer is
useless if the memory system has page-mode writes. Instead. it savs that a write buffer offers little
performance improvement in a memory subsystem with page-mode writes if the programs have
strong spatial locality in the writes. and the majority of the reads and instruction fetches hit in
the cache. Strong spatial locality means that the probability that two consecutive writes are to the
same DRAM page is very high.

Write-buffer depth is however important if the memory subsystem does not have page-mode
writes (Figure 7). A six-deep write buffer performs substantially better than a one-deep write
buffer in & memory system without page-mode writes,

5.5 TLB Performance

Figure 8 gives the TLB miss contribution to the ('PI for cach benchmark program. We see that
CPI contribution of TLB misses falls below 0.01 for all our programs for a 61 entry unified TLB:
for half the benchmarks. it is below- 0.01 even for a 32 entrv TLB.

5.6 Validation

To validate our simulations. we ran each of the henchmarks five times on a DECStation 3000/200
(running Mach 2.6) and measured the user fime for each run. The programs were run on a
lightly loaded machine but not in single-user mode. The simulations with write allocate -subblock
placement, 64K direct-mapped caches, 16 bvte blocks. and 6 entry TLB corresponds closely 10 the
DECStation 5000/200 with the following important differences:

o The simulations ignored the effects of context switches and system calls. Thus. actual program
runs suffered more data and instruction cache misses than those reported by the simulations

(36).

o The simulations assumed a virtual address=physical address mapping. Kessler and Hill [29]
show that random mapping (as used in the actual runs) can have manyv more conflict misses
than a careful mapping (such as that assumed by the simulations). Thus, the actual runs
probably suffered more conflict misses than those reported by the simulations.

o The simulations assumed that all instructions take exactly one cycle (plus memory subsystem
overhead). Some of the benchmarks do multiplications and divisions (both of which take more
than one cycle). Thus, the actual program runs may take more cycles to complete than the
cycles predicted by the simulations.

In order to minimize the memory subsystem effects of the virtual to physical mapping and
context switches, we took the minimum CPI of the five runs for each program and compared it
to the CPI obtained via simulations. We present our findings in Table 8: Measured (sec) is the
user time of the program in seconds: Measured C'Plis the C'PI obtained from the measured time:
Simulated CPIis the CPI obtained from the simulations: Difference is the difference between the
measured CPI and the simulated CPY; Discrepancy is the difference as a percentage of measured
CPL

Table 8 shows that with the exception of PIA and VLIW. the discrepancy is small (i.c.. less
than 10%); the actual runs validate the simulations. The discrepancy in PIA and VLIW is due
to the significant number of multi-cycle instructions they execute?!. Table 9 lists the multi-cvcle
instructions executed by each program?2. Totalis the percentage of instructions which are divisions.

2[n this section, multi-cvele instructions refer to integer multiplication and division, and floating point operations.

*2SML/NJ uses only the “double™ versions of cach floating point instruction.
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Program ] Measured (sec) ] Measured (_'MSimlllate(l Pl ] Difference ] Discrepancy (47) !
cw 25.83 1.42 1.39 0.03 248
Knuth-Bendix 14.95 1.27 1.21 0.06 5.22
Lexgen 16.13 1.40 1.31 0.09 6.29
Life 17.16 1.23 1.21 0.02 1.19
PIA 6.41 1.43 1.18 0.25 17.62
Simple 29.81 1.33 1.21 0.12 9.03
VLIW 25.61 1.76 1.39 0.37 20.77
YACC 6.58 1.39 1.36 0.03 2.20

Table 8: Measured versus Simulated

multiplications, floating point additions, or floating point subtractions: I Div and [ Mul are the
percentages of integer division and multiplication respectively: F Add. F Sub. F Div. F Mul are the
percentages of floating point additions, subtractions, divisions, and multiplications respectively.

The actual impact of multi-cycle instructions on CPI can be determined onlv by simulations.
This is because on a DECStation 5000/200, the CPU does not need to wait after issuing a multi-
cycle instruction. However, if the CPU tries to read the result of a multi-cycle instruction. it
stalls until that instruction is complete. Moreover, the number of cycles needed for a floating
point instructions depends on what other operations are currently in progress in the floating point
coprocessor. Table 10 gives the latencies (in cycles) for the different multi-cycle instructions. The
cycles for the floating point multiplication and division are lower bounds.

To test whether multi-cycle instructions could explain the high discrepancies in PIA and VLIW.
we added the overhead of multi-cycle instructions to the simulated CPI assuming that all multi-
cycle instructions stalled the CPU for the cycles listed in Table 10. This yielded a simulated ('PI
of 1.41 for PIA and 1.59 for VLIW. This reduced the discrepancy to 1.4% for PIA and 9.7% for VLIW.

On examining the assembly code generated for PIA, we found that the distance between multi-
cycle instructions and use of their results varied significantly. Moreover. in many instances the
assembly codé had bunches of multiplications and divisions: these cause resonrce conflicts in the
floating-point coprocessor thus causing them to have longer latencies than those in Table 10. There-
fore. without simulating multi-cvele instructions. we cannot determine their exact penalty in PIA.
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LProgram | Total ] [ Div | [ Mul l F Add ] I Sub I [ Div [ F AMul ]

CW 0.00 | 0.00 | 0.00 0.00 0.00 0.00 0.00
Knuth-Bendix | 0.00 | 0.00 | 0.00 0.00 0.00 0.00 0.00
Lexgen 0.04 | 0.02| 0.02 0.00 0.00 0.00 0.00
Life 0.00 | 0.00| 0.00 0.00 0.00 0.00 0.00
PIA 4.08 | 0.00| 0.00 1.30 0.38 0.84 1.56
Simple 1.67{ 0.00| 0.50 0.30 0.14 0.06 0.67
VLIW 095 0.32] 0.63 0.00 0.00 0.00 0.00
YACC 0.01| 0.01 0.00 0.00 0.00 0.00 0.00

Table 9: Multi-cycle instructions as a percentage of instruction count

| | Integer I Floating Point |

Multiplication 13 ]
Division 36 18
Addition - 1
Subtraction - ]

Table 10: Multi-cvcle instruction cost on a DEC'Station 5000/200

However. a simple calculation shows that even if each multi-cycle instruction stalls the C'PU for half
the time reported in Table 10, the discrepancy falls well below 10%. Thus. multi-cycle instructions
can explain the discrepancy for PIA.

From profiling VLIW we found that the vast majority of the multi-cycle instructions came from
one routine, mod, in the SML/NJ standard library. On examining the assembly code for mod. we
found that the results of the multiplications were used immediately. and the results of the divisions
were used either immediately or one instruction later. Thus each multiplication stalled the ('PU
for 13 cycles and each division stalled the CPU for 352 or 36 cvcles. Thus. it is reasonable to use
the numbers in Table 10 to compute CPI overhead of multi-cvcle instructions. Thus. multi-cvcle
instructions can explain the discrepancy for VLIW.

5.7 Extending the results

Section 5.3 demonstrated that heap allocation can have a significant memory subsystem cost if it
is not possible to allocate a new object directly into the cache. In this section. we present and
evaluate an analytic model which predicts the memory subsystem cost due to heap allocation when
this is the case. This model formalizes the intuition presented in Section 5.1. It allows us to predict
the memory subsystem cost due to heap allocation when block sizes. miss penalties. or program
heap allocation rates change. We use the model to speculate about the memory subsystem cost of
heap allocation for caches without subblock placement if SML/N.J were to use a simple stack.

23 Assuming the instruction (always arithmetic) between the division and nse of its result hits in the cache.




5.7.1 An analytic model

Recall that heap allocation with copyving garbage collection typically allocates memory which has
not been touched in a long time. and thus is unlikely to be in the cache. This is especially trne when
the allocation area does not fit in the cache. Thus. when newly allocated memory is initialized. write
misses occur. The rate of write misses depends upon the allocation rate and the block size. Given
the rate of write misses. we can calculate the memory subsystem cost. (', due to heap allocation.

a = allocation rate (words/useful instruction)
b = block size (words)

rp = read miss penalty (cycles)

wp = write miss penalty (cycles)

Then under the assumption that the allocation area does not fit in the cache, i.c. initializing
writes miss. :

Cwrite alloc = Wp *a/b

The cost of allocating one word on the heap, A. will be

Awrite alloc = Wwp/b

Note that depending on the cache organization. the write miss penalty may be 0.
Under the additional assumption that programs touch allocated data soon after it is allocated.
o - e K
Cywrite no alloc = fp " a/b
Awrite no alloc = fp/b

The cost of heap allocation should account for the difference in simulated ('PIs when the write
miss policy is varied for the SML/NJ benchmarks. since the benchmarks do so few assignments.
That is,

Curite alloc/no subblock ~  CPlyte alloc/no subblock ~ CPLyrite alloc/subblock

C ~ CPI

write no alloc/no subblock write no alloc/no subblock ~ CPlyrite alloc/subblock

Table 11 shows the average percentage difference between the cost of heap allocation, (', and the
differences in the CPIs. The percentage difference for write allocate/no subblock. D. was calculated
as

CPlyif = (“I')Iwrite alloc/no subblock ~ CPLyrite alloc/subblock
D _ Cwrite alloc/no subblock ~C P Ldiff
write alloc/no subblock ~ Cmdiff

The percentage difference for write no alloc/no subblock was calculated similarly. We fixed
the block size to be 16 bytes. Recall that the miss penalties dre wp = rp = 5. We calculated
the allocation rates (Table 12) for programs by using the allocation information from Table | and
instruction counts from Table 3. The average was the arithmetic mean. The average difference
when the allocation area does not fit in the cache (128K or less) is small (2-32%). When the
assumption that the allocation area does not fit in the cache is violated. the model is inaccurate, as
expected. The percentage difference heads towards infinity as CPlr becomes very small. Thus.
this model can be used to predict the memory subsvstem cost of heap allocation only for small
cache sizes.
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Cache size | Dy rite no alloc/no subblock | Pwrite alloc/no subblock
(Kilobytes) (%) (%)
SK 712 2.
16K 6.8 2.2
32K 7.02 2.2
64K 10.8 5.7
128K 31.8 23.5
256K 128.8 DU
512K 1847.7 1746.2

Table 11: Percent difference hetween analvtical model and simulations

Program Allocation rate Allocation rate

including callee-save conts. | excluding callee-save conts.

(words/useful instruction) | (words/useful instruction)
Cw 0.12 0.04
Knuth-Bendix 0.23 0.12
Lexgen 0.11 0.03
Life 0.11 0.02
PIA 0.17 0.13
Simple 0.14 0.05
VLIW 0.16 0.06
YACC 0.14 0.07
Median 0.11 .05

Table 12: Allocation rate for benchmarks. including and excluding callee-save continuations. which

can be stack-allocated.

B, e e v mrme i e i fies e
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Program ¢
(cveles/instruction)
CwW 0.15
Knuth-Bendix 0.4
Lexgen 0.12
Life 0.09
PIA 0.7
Simple 0.17
VLIW 0.23
YACC 0.21

Table 13: Assuming procedure activation records are stack allocated in SML/NJ. this table presents
the expected memory subsystem cost of heap allocation for caches without subblock placement

. 5.7.2 SML/NJ with a stack

We can use this model to speculate about the memory subsystem cost of heap allocation in SNL/NJ
when a stack is used. In the absence of first-class continuations. which the henchmarks do not use.
callee-save continuations can be easily stack-allocated. The callee-save continnations correspond to
procedure activation records. Table 12 shows that stack-allocating callee-save continuations would
greatly reduce the allocation rate of the benchmarks.

Assuming only continuations are stack-allocated. Table 13 presents an estimate of the memory
subsystem cost of heap allocation for caches that do not have subblock placement and are too small
to hold the allocation area. The block size is 16 bytes. the read miss penalty 15 cveles. and the
write miss penalty for the no-subblock caches L5 cvcles.

This is an upper bound estimate of expected memory subsystem cost of heap allocation with
a stack because it may be possible to stack-allocate additional objects [31]. We see that even with
a simple stack. the memory subsystem costs due to heap allocation for caches without subblock
placement will probably be significant for SML/NJ programs.

5.8 Summary of Results

Contrary to what other researchers have speculated. we have found that the memory subsystem
performance of SML/NJ is quite good on some real machines. Of the cache organization parameters
we studied, write allocate/subblock placement with a subblock size of 1 word is most important
for good performance of SML/NJ programs. However, small caches perform badly for all cache
organizations. Also. DE('Stations are the only machines whose caches have subblock placement
with a subblock size of 1 word: thus. the memoryv subsystem performance of SML/N.J programs is
bad on most current machines.

Higher associativity and larger block sizes also improve performance but the improvement is not
as significant as that offered by subblock placement. Larger cache sizes also improve performance.
but for cache sizes up to 128K the improvement is small. For six of the benchmarks. increasing the
cache sizes beyond [28K allows the allocation area to fit in the cache: thus increasing the cache
size beyond 128K can be profitable.

Most surprisingly. higher associativity and larger cache sizes (up to 128K) have little effect on
the performance of the data cache: most of the overall improvement observed is in the instruction
cache. The bad locality of the instructions due to small functions and frequent calls leads to many
conflict misses in the instraction cache. which can be alleviated by going 10 a larger cache size or
higher associativity,
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We found fast page mode writes to be very effective in absorbing the burstv writes of SML/N
programs. In memory subsystems with page-mode writes, the write-buffer depth was not important:
a one-deep write buffer performed almost as well as a six-deep write buffer. In memory subsvstems
without page-mode writes. the write buffer-depth was important: a one-deep write buffer performed
much worse than a six-deep write buffer.

Finally. we found the penalty due to TLB misses to be small for TLBs with 32 or more entries.

6 Future Work
We suggest three directions in which this study can be extended:

o measuring the impact of other architectural features not explored in this work.
o measuring the impact of different compilation techniques, and

e measuring other aspects of programs.

Regarding architectural features. there is a need to explore memory subsvstem performance
of heap allocation on newer machines. As ('PUs get faster relative to main memory. memory
subsystem performance becomes even more crucial to good performance. To address the increas-
ing discrepancy between ('PU speeds and main memory speeds. newer machines. such as Alpha
workstations [20]. often have features such as secondary caches. stream hullers. aud register score-
boarding.

Secondary caches improve performance by reducing accesses 1o main memory. Stream buffers
and scoreboarding improve performance by reducing the latency of cache misses. The impact of
these features on memory subsyvstem performance can be determined only by simulations. Previous
work has addressed at least two of the featnres in isolation: Short and Levy {12]. Borg «/ al. [10)].
and Przybylski [39] study two-level caches. Jouppi [26] studies stream buffers. and Chen and Baer
[13] study scoreboarding. However, we are not aware of any published work which has studied a
memory subsystem with all (or a combination) of these features. Also. we are not aware of any
work evaluating the impact of these features on heap allocation.

Regarding different compilation techniques, the impact of stack allocation is worth measuring.
A stack reduces heap allocation (which performs badly on most memory subsvstem organizations)
in favor of stack allocation (which can have good cache locality since it focuses most of the references
to a small part of memory. namely the top of the stack). For SML/NJ programs. the majority
of heap allocated objects can be allocated on the stack (Table 1). Therefore stack allocation
can substantially improve performance of SML/NJ programs on memory organizations without
subblock placement or with small cache sizes. However, stack allocation can slow down exceptions.
first-class continuations, and threads. A careful study is needed to evaluate the pros and cons of
doing stack allocation. We are currently working on this.

Regarding measuring other aspects of programs. several areas seem promising for future work:

1. Measuring the impact of different garbage collection algorithms on cache performance. Some
work has alreadv been done on this but more needs to be done (see Section 3).

2. Measuring the impact of changing various garbage collector parameters (such as allocation
area size) on cache performance. We are currently working on this.

3. Measuring the cost of various operations related to garbage collection: tagging. store checks.
and garbage collection checks. .\ preliminary study of this is reported in [15].

1., Measuring the impact of optimizations on eache performance, Of special interest here is the
effect of Minction inlining. We are currently working on this.




7 Conclusions

We have studied the memory subsystem performance of heap allocation with copyving garbage
collection, a general automatic storage management technique for modern programming languages.
Heap allocation is useful for implementing language features such as list-processing. higher-order
functions. and first-class continuations where objects mayv have indefinite extent. However. heap
allocation is widely believed to have poor memory subsystem performance [3%. (8. 19. 50]. This
belief is based on the high (write) miss ratios that occur when new objects are allocated and
initialized.

We studied the memory subsystem performance of mostly-functional SML programs compiled
with the SML/NJ compiler. These programs heap allocate at intensive rates. They nse heap-only
allocation: all allocation. including activation records. is done on the heap. We simulated a wide
variety of memory subsystems tvpical of current workstations.

To our surprise, we found that heap allocation performed well on some memory sabsystems. In
particular. on an actual machine {the DE('Station 5000/200). the memory subsvstem performance
of heap allocation was good. However, heap allocation performed poorly on most memory subsys-
tem organizations. The memory subsystem property crucial for achieving good performance was
the ability to alloc: ;e and initialize a new object into the cache withont a penalty. This can be
achieved by having subblock placement or a cache large enough to hold the allocation area. along
with fast page-mode writes or a sufficiently deep write buffer.

We found for caches with subblock placement. the arithmetic mean of the data cache penalty
was under 9% for 64K or larger caches: for caches without subblock placement. the mean of the
data cache penalty was often higher than 50% . We also found that a cache size of 312K allowed 1he
allocation area for six of the benchmark programs 1o fit in the cache. which substantially improved
the performance of cache organizations without subblock placement.

The implications of these results are clear. First, a stack is not needed to achieve good memory
subsystem performance. Given the right memory subsystem, heap allocation of procedure acti-
vation records can also have good memory subsystem performance. Heap allocation can be used
without a performance penalty in place of stack allocation, even though it is a more general storage
management technique. Second, computer architects can better support modern languages which
make heavy use of dynamic storage allocation on machines with small primary caches by nsing
subblock placement with a subblock size of | word.
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Figure 10: Knuth-Bendix summary
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Cycles Usetul instiuction

Cycles/Usetul insttuction
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Cycles/Usetul instruction
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Cycles/Useful instruction
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